2. Two-Level Atoms
and Spontaneous Emission

The damped harmonic oscillator provides our elementary description for the
electromagnetic field in a lossy cavity. The damped two-level atom will pro-
vide our elementary description for the matter with which this field interacts.
In an atomic vapor, loss of energy from an excited atom may take place via
spontaneous emission or inelastic collisions. Elastic collisions can also play an
important damping role; although, of course, they do not carry away energy;
elastic collisions interrupt the phase of induced electronic oscillations and in
this way damp the atomic polarization. We will first restrict our treatment to
the case of purely radiative damping, assuming conditions in which collisions
are unimportant. Such conditions are achieved, for example, in atomic beams.
Later we will derive the terms that must be added to the master equation to
describe additional phase destroying processes such as elastic collisions.

We consider an atom with two states, designated |1) and [2), having en-
ergies Ey and B with Ey < E,. Radiative transitions between |1) and |2)
are allowed in the dipole approximation. Our objective is to describe energy
dissipation and polarization damping through the coupling of the |1) — |2)
transition to the many modes of the vacuum radiation field (a reservoir of
harmonic oscillators). For simplicity we assume that there are no transitions
between |1) and |2) and any other states of the atom. The extension to mul-
tilevel atoms can be found in Louisell [2.1] and Haken [2.2]. A treatment
for just two levels which corresponds closely to our own is given in Sargent,
Scully and Lamb [2.3].

2.1 Two-Level Atom as a Pseudo-Spin System

A two-state system can be described in terms of the Pauli spin operators. We
will be using this description extensively and we therefore begin by briefly
reviewing the relationship between these operators and quantities of physical
interest, such as the atomic inversion and polarization. A more complete
coverage of this subject is given by Allen and Eberly [2.4].

If we have a representation in terms of a complete set of states |n),n =
1,2,..., any operator O can be expanded as
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0=> (n|0

n,m

m)[n)(m|. (2.1)

This follows after multiplying on the left and right by the identity operator

I = ¥, |n)(n|. The (n|O|m) define the matrix representation of O with
respect to the basis |n). If we adopt the energy eigenstates |1) and |2) as a

basis for our two-level atom, the unperturbed atomic Hamiltonian H4 can
then be written in the form

Ha = E\[1)(1] + E»|2)(2|
= 3(Br + Bo)I + §(B; — B)os, (2.2)

where
o = |2)(2] - [1)(1]. (2.3)
The first term in (2.2) is a constant which may be eliminated by referring

the atomic energies to the middle of the atomic transition, as in Fig. 2.1. We
then write

Hy = 3hwpo,, ws=(BEz—E)/h (2.4)
By 12)
" a +3hws
g 2 Y¢ER ) (R ———
(5]
# |Wb€.‘r
5 Fig. 2.1 Energy levels for a two-level
1 1} atom.

Consider now the dipole moment operator eq, where e is the electronic
charge and § is the coordinate operator for the bound electron:

2
eg=e Y (n|g|m)n)(m|

n,m=1
= e((1]q(2)[1)(2] + (214]1)|2)(1])
= am“_.uo_..l + aﬁuHQ.+u mwmv
where we have set (1|¢|1) = (2|¢|2) = 0, assuming atomic states whose

symmetry guarantees zero permanent dipole moment, and we have introduced
the atomic dipolé matriz elements
diz =e(1/4[2),  dy = (dp2)", (2.6)

and atomic lowering and raising operators
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o- = |1){2], gy = |2)(1]. (2.7

The matrix representations for the operators introduced in (2.3) and (2.7)

are
1 0 A {0 1
anAo Lu, Ft? ou, q+|Ao ov. (28)
By writing
oy = 3(0, Lioy), (2.9)
with

o=(i0) ==( %) 4]

we see that 0,0y, and o, are the Pauli spin matrices introduced initially
in the context of magnetic transitions in spin-3 systems [2.5). When applied
to two-level atoms o, o_, and o4 are referred to as pseudo-spin operators,
since, in this context the two levels are not associated with the states of a

real spin.
Exercise 2.1 From the relationships above, deduce the following:
1. the commutation relations
[o4,0-] =02, [o4,0:] = F204; (2.11)

2. the action on atomic states:

QL._V = I_Hv, ..u.u_Mv — _qu AMHM.@&
o]ty =, a_|2) = 1), (2.12b)
el gp el (2.12)

From (2.12b) and (2.12c) the designation of o and o, as atomic lowering
and raising operators is clear.

We will formulate our description of two-level atoms in terms of the op-
erators gy, 0—, and o4. For an atomic state specified by a density operator
p, expectation values of o, o, and o, are just the matrix elements of the
density operator, and give the population difference

(02} = tr(poz) = (20p]2) — (1lpl1) = p22 — 11, (2.13)
and the mean atomic polarizalion

(e§) = dyatr(po_) + datr(po.)
= dh2(2p|1) + dar (1]p]2)
=d;3 pa1 + d21 pr2- (2.14)

or
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2.2 Spontaneous Emission
in the Master Equation Approach

2.2.1 Master Equation for a Radiatively Damped Two-Level Atom

We consider an atom that is radiatively damped by its interaction with the
many modes of the radiation field faken in thermal equilibrium at temper-
ature T. This field acts as a reservoir of harmonic oscillators. Within the
general formula for a system S interacting with a reservoir R, the Hamilto-
Em._u (1.16) is given in the rotating-wave and dipole approximations by [2.6,
2.7

Hg = WUP_}Q.E AM.“_.mm.v

Hp= Mgww,h...»ﬂw.». (2.15b)
kA

Hgp = M m?h.»ﬂh;q: + KEATEAO ), (2.15¢)
kA

with

. ke \ w, “
Kgx = |nm“_r TA N.@m“._\ kX ﬁmmu. ﬁwu_.mu

The summation extends over reservoir oscillators (modes of the electromag-
netic field) with wavevectors k and polarization states A, and corresponding
frequencies wy. and unit polarization vectors éx,x. The atom is positioned at
T4, and V is the quantization volume. ky,» is the dipole coupling constant for
the electromagnetic field mode with wavevector k and polarization A. The
general formalism from Sect. 1.3 now takes us directly to (1.34), where from
(1.32) and (2.15) we must make the identification:

sy =0_, Sa =04, (2.17a)
.N..u = H..q = Matw.v.ﬁw.y. H._u == M___nk_\fq._w.\/. A.MH”.‘_UV
kA kA
In the interaction picture,
RE)=Tte) = war) e, (2.18a)
kA
Do(t) =T(t) = Y muaruae™, (2.18b)
kA
and
5 ﬁnu - mw._?c.\.Qn\uvunulml-.?inn\mv« = lel?snu AM.”_wm.v

3 ?v — gilwaos \uu__.Q+mI&..Ebn.Lu_a = Q.+m¢.....c_ mw 1 Euv
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Note 2.1 To obtain (2.19), consider the Heisenberg equation of motion

—i(waoz/2)t

§ = mwexmmﬁe>q~\ugnﬂquu| —0_0,)e
= —iwa 8.
This is trivially solved to give

51(t) = 5;(0)e WAt = g_e 'A%,

Aside from the obvious notational differences, (2.18) mn@ .Aw.mmu are the
same as (1.41) and (1.40), respectively, ﬂw,&w the substitution a — ﬂl.
at — o4. The derivation of the master equation for a two-level W_EE then
follows in complete analogy to the derivation of the master manwsﬁ for Em
harmonic oscillator, aside from two minor differences: ﬁ.b The explicit @.E.El
ation of the summation over reservoir oscillators now involves a mcﬂ..._..wson
over wavevector directions and polarization mﬂ_wnmm.. (2) The ooEEc»m.Soz re-
lations used to reduce the master equation to its simplest form are m_.mm_.mn_...
Neither of these steps are taken in passing from (1.34) to ﬁ..mmu_ or in ma.ﬂ,_-
uating the time integrals using (1.65). We can therefore simply make the
substitution a — o_, al — o in (1.62) to write

p=[L@+1) +i(A + Q)] (0-pos ~ 050-7)

2
+(3n+id)(o4po- — po_o4) +he, (2.20)
with 72 = fAi(wys, T') and
y=am Y \ &%k g(ie) ke, N) P8 (ke — wa), (2.21)
A
g(k)|x(k, A)|? s
mme\%» ey (2.22)

A=%"p \ &3k mﬁaﬁwhswwwwv_umﬁwn, <o (2.23)

We have grouped the terms slightly differently in (2.20), but _..ro. corre-
spondence to (1.62) is clear when we note that, there, a = /2 + 1A and

B = (v/2)7 +iA'. Equation (2.20) gives
p=2(a+1)(20-pos — 010~ joro-) =4 + Dloso-.7]
+ wmﬁmq‘Tle ~0_04p—po-o4)+il' o0y, f)
= !\mwﬁuba + Ao, p] + W_:m +1)(20_poy — opo_p— poso_)

+ w%fmq- —0_04f— po_0y), (2.24)
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where we have used
0+0- = |2(L[1)(2] = [2)(2] = 3(1 + o), (2.25a)
o-04 = [1){21211] = [1)(1| = 3(1 - 02). (2.25b)

Finally, transforming back to the Schrodinger picture using (1.72), we obtain
the master equation for a radiatively damped two-level atom:

p=—i3uilos, ) + L+ 1)@20_poy — 020_p— poyo.)

+ 320400 —0_04p—po_oy), (2.26)

with
Wi =wa+24"+ A, (2.27)
The symmetric grouping of terms we have adopted identifies a transition
rate from [2) — [1), described by the term proportional to (v/2)(7+1), and a
transition rate from [1) — |2), described by the term proportional to (v/2)A.
The former contains a rate for spontaneous transitions, independent of 7, and
a rate for stimulated transitions induced by thermal photons, proportional
to f; the latter gives a rate for absorptive transitions which take thermal
photons from the equilibrium electromagnetic field. We will have more to say
about this point later. Notice that the Lamb shift given by Wy —wy includes
a temperature-dependent contribution 24’ which did not appear for the har-
monic oscillator. Tts appearance here is a consequence of the commutator
le—,04] = —0., in place of the corresponding [a,a!] = 1 for the harmonic
oscillator. From (2.22), (2.23), and (1.52)

24'+A=Y"P \ o Sk, M) (1 + 2ii(ke, T)]
A

wy — ke
s s, 9(K)|k(k,T)|? fike
= Myuﬁ\.n_ k Py coth %sT)’ (2.28)

where kg is Boltzmann’s constant. The temperature independent term in the
square bracket gives the normal Lamb shift, while the term proportional to 27
gives the frequency shift induced via the ac Stark effect by the thermal reser-
voir field. We will discuss the ac Stark effect later in this chapter. It is only
quite recently that attention has been paid to this temperature-dependent
frequency shift, following the work of Gallagher and Cook [2.8]. A thorough
discussion for real atoms is given by Farley and Wing [2.9]. Beautiful experi-
ments by Hollberg and Hall using highly stabilized lasers have measured the
temperature-dependent shift in Rydberg atoms [2.10).

Note 2.2 Recall from Sect. 1.4.2 that the rotating-wave approximation does
not give the correct nonrelativistic result for the Lamb shift [2.11). Actually,
(wa — kc)~* should read (wp — ke) ! + (wy + kc)~1 in (2.28) (Exercise 2.2).
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2.2.2 The Einstein A Coefficient

If we have a correct description of mwcu"wbmowm emission we must expect the
damping constant 7y appearing in Hw.m& to give us i.ﬁ ncﬂmmn Bmc_n. for the
Einstein A coefficient. We can check this by v.mnmoﬂﬁﬁm the integration over
wavevectors and the polarization summation in (2.21). .

Adopting spherical coordinates in k-space, the density of states for each

polarization state X is given by [2.12]

N
o(k)d% = mﬁum duw sin 0d9dg. (2.29)

Substituting from (2.29) and (2.16) into (2.21),
e = I 2
i ép.a - d1n) 6w —w
maM\c %.\a msm%\o b 253 wmgisﬁ.y 12)26(w — wa)
X

3 ™ 27 2 M
“a M \ sin d6 \ do (é,x - dia)®. (2.30)
x J0 o

~

8m2eghic?

Now, for each k we can choose polarization states A; and Ag so that the first
vc_m.mwum_ﬁouﬂ state gives ég», - diz = 0. This is grmm.dmm with the geometry
illustrated in Fig, 2.2. Then, for the sécond polarization state, we find

) 732
By - o) = (1 — o @) = d[1 - (do - B?],  (23D)

where mﬁ and & are unit vectors in the directions of dy3 and k, H.Pw_uanzwm@.
The angular integrals are now easily performed if we choose the k.-axis to
correspond to the dyz direction. We have

2r T %
dz, \ d¢ \ dfsin (1 — cos® B)
0 4]

T 27 g
.\ sin0dd | de (éxn - diz)
0 (1]

8T
=5, (2:32)
. 2.30) and (2.32)
prom (2:30) enc _ 1 dwidly (2.33)
7= dne; 3k

M_P..v:

diz

A k .
et Fig. 2.2 Polarization states used in the
evaluation of (2.30).
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This is the correct result for the Einstein A coefficient, as obtained from the
Wigner-Weisskopf theory of natural linewidth [2.13, 2.14].

Exercise 2.2 After replacing (ws — k¢)™! by (wy — ke)™! + (wa + ke)—t

in (2.23), show that this equation gives the formula for the temperature-
dependent shift derived in Ref. [2.9]:

A = 2 p \ dw w?
e ﬁqﬂmo 3hme? [i] « Wy — w i wWa +w m.w.b...\_—n_mu.. B | : AM.W%V

The corresponding formula for the Lamb shift is

1 243 = 1 1
A= _—— 12 w\ d A g ;
dmeg 3hmed ~ J, ww WA —w * WA +w (2.35)

2.2.3 Matrix Element Equations, Correlation Functions, and
Spontaneous Emission Spectrum

We mentioned earlier that (o.), (¢_), and (o) are simply related to the
matrix elements of p. We can derive equations of motion for these expectation
values from (2.26) as we did for the harmonic oscillator, or, alternatively, we
can simply take the matrix elements of (2.26) directly. Following the second
approach, we use (2.12) to find

Pz =— u“,wn&a (2/(02p — po.)|2)
+ 2+ D)(@I(20_poy — 710-p - poya)[2)

+37(2|(204p0 — 0_01p~ po_0.)[2)

==+ 1)paa + 1pu1, (2.36a)
and, similarly:
pr1 = —ipn +y(A + 1) pag, (2.36b)
P =— mmmm +1) + _F.__L pa1, (2.36¢)
1z = — mam +1) = iwa prz. (2.36d)

We have dropped the distinction between wy and w. Equations (2.36a) and
(2.36b) clearly illustrate our interpretation of the two terms — proportional
to (¥/2)(A + 1) and (7/2)7 - in the master equation; the former describes
[2) — [1) transitions at a rate (7 + 1), and the latter describes |1) — 12)
transitions at a rate yf. Of course, probability leaves and enters the two
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states in such a way that the total probability is preserved — p11 + poz = 0.
Equations (2.36a) and (2.36b) are in fact just the rate equations of Einstein
A and B theory.

Exercise 2.3 Show that in the steady state the balance between upwards and
downwards transitions leads to a thermal equilibrium distribution between

the states |1) and |2).

Using the relations (o) = p2z — p11, (0-) = p21, (04) = p12, and p11 +
paz = 1, the matrix element equations can be written in the alternative form:

(6:) = —y[{o)(@R +1) +1], | (237)
(o_) = :m@i 1) +§L (o), (2.37b)
(64) = — m@i 1) - 5\; (04). (2.37c)

These provide us with a simple illustration of the use of the quantum re-
gression theorem (Sect. 1.5). At optical frequencies and normal laboratory
temperatures #i is negligible, and for simplicity we drop it here. Then, using
(2.25a), we may write the mean-value equations in vector form:

(8) = M(s), (2.38)
with
ag_
s=| o4 |, (2.39)
o440
M = diag |- @ +iwa), = @ —iwa), ] (2.40)
For 7 > 0, equations for nine correlation functions are obtained from (1.107):
L (o-(Ws(+7)) = Mlo-(O)s(t+7), (2.41a)
%F (0)s(t + 7)) = Moy (£)s(t +7)), (2.41b)
L (o4 (0o Ws(t+7) = MlosBo-Ost+7)). (2410

Equations for a further nine correlation functions with reverse time order are
obtained from (1.108); alternatively, this second set of correlation functions
can be derived from the first, using

(A@+7)A,(2)) = (AL (DAY +7))" (2.42)

Equation (1.109) defines a further twenty-seven correlation functions.
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Let us consider an atom prepared initially in its excited state. For this
initial condition (o_) = (o4+) = 0, {640_) = pgs = 1, and the solution to
(2.38) is
(s)=( 0 |. (2.43)

Initial conditions for (2.41a)-(2.41c) are then, respectively,

0
(o—_(t)s(t)) =] 1 -], (2.44a)
0
. et
(o+@st)=( 0 |, (2.44b)
0
0
{(o4()o_t)s(t))=( 0 |, (2.44c)
et

where we have used (2.25), together with the following:

o2 =12)(1]2)(1] =0, (2.45a)
o2 = [1)(2)1)(2| =0, (2.45b)
o40-04 = [2)(11)(2[2)(1] = [2)(1] = o, (2.45¢)
o_oypo_ = |1}{2|2){1|1){2] = [1)(2| = o_. (2.45d)

The nonzero correlation functions obtained from (2.41) with initial conditions
(2.44) are (7 = 0)

(o-(B)o(t+ 7)) = eaTe= 27 (1 _e=),  (2.46)

(04()o_(t+7)) = e nTe=O/Temt (9.47)

(or()o_(tor(t+T)o_(t+ 7)) =e 7T, (2.48)

Equation (2.47) provides the result for the spontaneous emission spectrum.

For an ideal detector, the probability of detecting a photon of frequency w
during the interval ¢ =0 to ¢ = T is given by [2.15]

P(w) .ﬁ .w& \o q_,% e~ =) (g, (t)o_(t')). (2.49)

We will see how the field at the detector is related to the atomic operators

o- and o shortly (Sect. 2.3.1); clearly, such a relationship is needed to write
(2.49). Using (2.47) and

(o4(t+T7)o_(t)) = (o4 (t)o_(t + T))*, (2.50)
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we find, for all ¢ and #/,

(o4 (R)o_(t)) = e“alt=t)g=(/D(E+) (2.51)
Then,

r
Pl) & \ T o el i)t \ dt’ e~ v/D—ilw—wn)
JO o

1 — e~ (/DT g=ilw=6A)T | _ ¢—(1/DT gilw-wa)T

. . (252)
X T i — wa) /2w — wa)
For long times, T >> 1/, this gives the Lorentzian lineshape
1
P(w) = (2.53)

(1/2) + (w — wa)*’

2.2.4 Phase Destroying Processes

The interaction with the many mode electromagnetic field that gives w.nﬁ. to
spontaneous emission causes both energy loss from the atom and damping
of the atomic polarization. Polarization damping is described #.d, the H.omm
terms proportional to (y/2)(27 + 1) in (2.36¢) and (2.36d). This damping
results from a randomization of the phases of the atomic wavefunctions by
thermal and vacuum fluctuations in the electromagnetic field, nﬁ_mmnm ﬁv.n
overlap of the ‘upper and lower state wavefunctions to decay in time. u.n is
often necessary to account for additional dephasing interactions; these might
arise from elastic collisions in an atomic vapor, or elastic phonon scattering
in a solid. What terms must we add to the master equation (2.26) to describe
rocesses?
m:nﬂﬁﬁrmzoamso_omwn& model describing atomic &mvrmwﬂm can be obtained
by adding two further reservoir interactions to the Hamiltonian (2.15). We

add
Hgephase = Hr, + Hr, + Hsg, + Hsr,, (2.54)

with

mm,.*.mmum M m&d Lu,q.:, + M mE& q.m%.uu., ﬁu.uumu
J j
Hgsp, + Hsgp, = M Firy gk Lu,ﬂ:n o-04+ MU k2 ﬂw%.uw o+o-. (2.55b)

ik ak
The complete reservoir seen by the atom is now composed of three subsys-
tems: B = Ris ® Ry ® Ra, where Rqy is the reservoir defined by B..H.mwu.
These reservoir subsystems are assumed to be statistically independent, with
the density operator Rg given by the product of three thermal equilibrium
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operators in the form of (1.38). The interactions Hgg, and Hgg, describe
the scattering of quanta from the atom while it is in states [1) and |2}, re-
spectively; they sum over virtual processes that scatter quanta with energies
Fiwy and hwgr into quanta with energies hw,; and Fws; while leaving the
state of the atom unchanged.

The terms that are added to the master equation by these new reservoir
interactions follow in a rather straightforward manner from the general form
(1.34) for the master equation in the Born approximation. In addition to the
reservoir operators I7(t) and @E that are defined by the interaction with
Ri2 [Eqgs. (2.18)], we must introduce operators I3(t) and I(t) to account for
the interactions with R; and R,. First, however, we have to take care of a
problem, one which was not met in deriving master equations for the damped
harmonic oscillator and the radiatively damped atom. Equation (1.34) was
obtained using the assumption (1.28) that all reservoir operators coupling
to the system S have zero mean in the state Ry. This is not true for the
reservoir operators coupling to o_¢,. and o, o_ in (2.55b); terms with j = k
in the summation over reservoir modes have nonzero averages proportional to
mean thermal occupation numbers. To overcome this difficulty the interaction
between S and the mean reservoir “field” can be included in Hg rather than
Hgr. With the use of (2.25), in place of (2.55a) and (2.55b) we may write

Hs = 3h(wa + 6p)0, (2.56)
and
Hgpg, + Hgp,
= M”_m___nwu,rﬁ......“u.q.; - mu,r.m_dua.l.u.+ + Mmﬁumw T.wu.q.nk - mm&ql....uu,ua_.+o.|.
Jik gk
(2.57)

with the frequency shift &, given by

mﬂ = M?ﬂvu,u.qlwf. — auuw..mwu.u.w
hOO

H\_..M dw [ga(w)k2(w, w) — g1{w)ky (w, w)]A(w, T). (2.58)
n1; = w1y, T) and fin; = fi(ws;, T') are mean occupation numbers for reser-
voir modes with frequencies wy; and wy;, respectively, and in (2.58) the sum-
mation over reservoir modes has been converted to an integration by intro-
ducing the densities of states g1(w) and gy(w). The sum of (2.56) and (2.57)
gives the same Hamiltonian as the sum of (2.55a) and (2.55b); but now the
reservoir operators that appear in Hggr, and Hsg, have zero mean.

We may now proceed directly from (1.34). After transforming to the in-
teraction picture, the interaction Hamiltonian (2.57) is written in the form
(1.33) with
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33(f) =o_04, (2.59a)
84(t) = oyo_, (2.59b)
and - t i g —wip )t 2
H..mﬁnu = M..ﬂw.q,» A%pu......; e VTR .q,w.___.wwmv_ ﬁMmO@u
ik
Hﬁ»@v = M..nuuw Aﬁwwﬁww mm?‘»uleﬁwﬁ == mu#.m.u‘..".v. Aw.mo_uu
Ik

These are to be substituted — together with 3;(¢), 52(t), I} (t), and I%(t) from
(2.18) and (2.19) — into (1.34). Since the reservoir subsystems are statistically
independent and all reservoir operators have zero mean, all of the cross terms
involving correlation functions for products of operators from different reser-
voir subsystems will vanish. Thus, the spontaneous emission terms arising
from the interaction with I3 and I’ are obtained exactly as in Sect. 2.2.1.
The additional terms from the interaction with I'y and Iy take the form

(), =- \ lo_os0_04 B - 004 5()7_o TS,
dephase 0 B }
+[p(t)o—0 4004 — o_a4 p(t oo [(T(t) T (1)),
+lopo_oyo_p(t") — 040 p(t")oro-[(La(t) La(t'))r,

+p(t')oso_040_ — oo p(t)oro | (Fy(t')Is(t))r,-
(2.61)

We will evaluate the first of the reservoir correlation functions appearing
in (2.61); the others follow in a similar form. From (2.59a),

(3O (t)r,

] i(wij—wik)t _ £ 7. .
= ﬂﬂﬁmuc M M .vn“_.u..r ..n..__.u.__wn___ A.__a_.u_.ﬂ.u.__fm (w15 uw.;Hu._v
gk 3K

% Tw\:ﬁm:eiue;.z. = &s.mui

- . ’
B _HTNEA M > gk ke vl ik 1] e Wbl —on)t

gk 30K
_ A o ¢
e M M K14 B1jtk Tiyj .__aw.w___...a._:—n., mnﬁsnuw F__.__n;
3 gtk
= (W —wie)t
=35 mugp magege vl i iy e¥Ors ) v_
gk 3

+ D Kugg Kagrge g g,
3
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where Rjo is the thermal equilibrium density operator [Eq. (1.38)] for the
reservoir subsystem R;. The nonvanishing contributions to the trace are now
obtained as follows: the first double sum contributes for j = k # j' = ¥/, for
j=k #k=7, and for j = k= j' = k’; the second double sum contributes
for 7 = k; and the third double sum for j = k. The correlation function
becomes

= o fal
(Ta()13())r;
- - - o . o i i ’

= M K134 Kag440 Tag Nage + M”. Kijjt K155 ....__.Hu._?w»u,__ + ..—vmnaﬁuu wy g )(t—t')

3d 33"

J#3’ J#i’

D = = —
Dbyl = 2D mugs gy g g + 3 kags Kagege g Py
i 53’ . 3’

where the first three terms come from the first double sum, and 1 the fourth
term comes from the second and third double sums. Noting that ni; = @i}, +
71;(fi1; + 1), we see that the sums for j # j/ are completed for all j and bk
by the third term in this expression; setting k1;;r k155 = |K1;|2 - required
for (2.55b) to be Hermitian — we arrive at the result

(@O Ls()ry = Y o157 2inj (e + 1)ei@r3=wrsn)e=t) (2.62a)
3d

Similar expressions follow for the other reservoir correlation functions:

(L)L (E)ry = D Ikazs [PRg; (Ao + 1)ei@aiwai )=t (2.62b)

and
(B) o(a, = (BOTENR) , (2.620)
(Fa(t) (O, = (DO 4 ))rs) - (2.62d)

If reservoir correlation times are very short compared to the timescale for
the system dynamics, the time integral in (2.61) can be treated in the same
fashion as in Sect. 1.4.1. After simplifying the operator products using (2.25),
(2.61) then gives

(

-18

= 4l Yoy, .. i
vmp_uswao = —igdplos, | + P (02p02 — f), (2.63)

with
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T = ﬁ.\.oo&c Funeuu_au?,eu_u + g1 (w)| k1 AE.EV_J
0
x fi(w, T) [A(w, T) + 1], (2.64)

A= H\..\Looaaﬁooae.. 92(w) g2 (W) K2 (w, w')[? = g1 (w)gs (w’) |1 (w, ") |2

w—w

x Alw, T). (2.65)

We add (2.63) to the terms describing radiative damping given by (2.24), and
transform back to the Schrodinger picture using (1.72) and (2.56) to obtain
the master equation for a radiatively damped two-level atom with nonradiative
dephasing:

p=— iywlaloz, ) + LA+ 1)(20_pos — 040 p— po-)

+ 15(204p0- — 0-01p = po-02) + R(ospos = p),  (266)

where the shifted atomic frequency is now
Wy =wa+24"+ A+ 6+ 4, (2.67)

with 24" + A, 6,, and A, given by (2.28), (2.58), and (2.65).

2.3 Resonance Fluorescence

The theory of resonance fluorescence provides a good illustration of the meth-
ods we have learned so far, and a simple situation in which to introduce some
of the subtleties that arise in the treatment of damping for interacting atoms
and fields. We are concerned here with a two-level atom irradiated by a
strong monochromatic laser beam tuned to the atomic transition. Photons
may be absorbed from this beam and emitted to the many modes of the vac-
uum electromagnetic field as fluorescent scattering. This scattering process
is mediated by the reservoir interaction (2.15¢) underlying our treatment of
spontaneous emission.

The phenomenon of fluorescence has fascinated physicists for over a cen-
tury [2.16, 2.17). A simple classical picture can be given in terms of the
Lorentz oscillator model which underlies the classical theory of dispersion
_w.wmlm‘wc_. In this picture, an harmonic electron oscillator is set into forced
oscillation by the incident light and reradiates as a dipole source according
to the laws of classical electrodynamics. Of course, in the absence of damp-
ing the amplitude of a resonantly forced oscillator grows without bound; to
avoid this divergence some account of atomic damping must be given. In the
classical theory this is achieved with the introduction of a velocity-dependent
force derived from radiation reaction. The damping constant introduced in
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this way ensures that the energy appearing in the reradiated field is matched
by energy loss from the oscillator. This classical theory does pretty well
at weak excitation. In particular, the relationship between the fluorescence
spectrum and the spectrum of the excitation is correctly obtained; single-
frequency excitation produces a forced response of the electron oscillator and
a reradiated field with the same frequency. A hastily drawn conclusion for a
two-level atom might expect the fluorescence spectrum to show the natural
linewidth [Eq. (2.53)]. This would follow if the atomic dynamics proceeded
by independent absorption and spontaneous emission events. However, this
is an incorrect view of the scattering process. A perturbative treatment of
the quantum-mechanical problem is adequate to show that at weak intensi-
ties the classical result is correct [2.21]. We must view the scattering as an
essentially coherent process, passing energy from the incident beam to the
scattered field without lingering en route in the excited state [2.22].

Of course, a two-level atom is not an harmonic oscillator, and the classical
theory fails at sufficiently high laser intensities — in fact, it fails even at weak
intensities if we look more carefully at the statistics of the scattered photons.
As we will see, a two-level atom responds nonlinearly to increasing intensity;
also, while an harmonic oscillator can be excited ever higher up its ladder of
Fock states, a two-level atom can only store a single quantum of energy. From
a quantum treatment we will find the following: With increasing incident
intensity, the fluorescence spectrum picks up an incoherent component having
the natural linewidth. This incoherent specirum splits into a three-peaked
structure and eventually accounts for nearly all of the scattered intensity.
This behavior was first predicted by Mollow [2.23] and has been observed
in a number of experiments [2.24-2.26]. The incoherent spectral component
arises from quantum fluctuations around the nonequilibrium steady state
established by the balance between excitation and emission processes. These
quantum fluctuations are inherent in the probabilistic character of quantum
dynamics, and are not introduced by any external stochastic agent.

Quantum mechanics makes its mark even at weak laser intensities if we
ask the right question. We will find that there is zero probability of detecting
two scattered photons emitted at the same time, independent of the inci-
dent intensity. This photon “antibunching” is a consequence of the fact that
the atom can store just a single quantum of energy, and, after emitting this
quantum, cannot produce a second until it is reexcited. It is the inverse of the
photon “bunching” associated with the famous Hanbury-Brown-Twiss effect
(Sect. 1.5.3) - there the probability for detecting two simultaneous photons is
twice that expected for random photon arrivals [2.27). Photon antibunching
cannot be treated using a classical statistical description for the scattered
field, and has therefore received special attention as a phenomenon requiring
the quantized electromagnetic field [2.28-2.30]. The earliest reference to the
vanishing probability for simultaneous photon detection in resonance fluores-
cence is contained in the work of Mollow [2.31]. Carmichael and Walls [2.32]
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calculated the second-order correlation function for the scattered light, ex-
plicitly demonstrating antibunching in contrast to the bunching of Hanbury-
Brown and Twiss. Shortly thereafter photon antibunching was observed by
Kimble et al. [2.33] in the fluorescence from a dilute sodium atomic beam.

We will obtain the fluorescence spectrum and a description of photon
antibunching using the master equation methods we have developed. This
is not the only approach to these problems and an extensive literature is
available on this subject. A good review with complete references is given by
Cresser et al. [2.34].

2.3.1 The Scattered Field

The incident laser mode is in a highly excited state that is essentially un-
affected by its interaction with the single atom. We can treat this field as
a classical driving force. Then the Hamiltonian for the resonantly driven
two-level atom interacting with the many modes of the electromagnetic field
separates into system and reservoir terms, as in (1.16), with

Hs = Yhwaa, — dE(e"“Ato, + ™Aty ), (2.68a)

Hrp=)_ hwprl  mea, (2.68b)
kA

Hsp = Mmﬁah.yln.»91 + x.w.y...,w_ya+vw (2.68¢)
kA

both interactions are written in the dipole and rotating-wave approximations.
The laser field at the site of the atom is

E(t) = 62E cos(wat + ¢), _ (2.69)

where ¢ is a unit polarization vector, E is a real amplitude, and the phase ¢
is chosen so that d = & - dge'® is also real.

The master equation approach focuses on the dynamics of the atom. We
are ultimately interested, however, in the properties of the fluorescence. The
scattered field is given in terms of the reservoir operators — in the Heisenberg
picture
Br,t) = BV, t) + B (1), (2.70a)

with

) Fioh . "
BN =i3/ wgw Exrria(t)e®, (2.70b)
kA

0,0 = B, 1. (2.70¢)

We will need the correlation functions
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GO(t,t+7) = (ECO () ED(t + 7)), (2.71)
and
GA(t,t+ 1) = (ECN)EC (¢ + 1) ED (¢ + 1) EH) (1)), (2.72)

where the field operators are evaluated at the position of an idealized point-
like detector. Since we trace over the reservoir variables in deriving the master
equation for S, our first task is to relate the scattered field to atomic source
operators, so that (2.71) and (2.72) can be expressed in terms of operators
of the system §.

We begin with the Heisenberg equations of motion for the electromagnetic
field modes:

T = —iWETEA — m..nh_yu.l. (2.73)

Writing
Ti = Ty e At (2.74a)
g = g_e WAt (2.74b)

and integrating (2.73) formally, gives
t
Fua(®) = T2 (0) — iKga \ dt &_(¢)eiln—unt’ (2.75)
0

The separation of the rapidly oscillating term in (2.74b) is motivated by the
solution to the Heisenberg equations for the free atom [Egs. (2.19)]. Now,
substituting ry »(£) into (2.70a), and introducing the explicit form of the
coupling constant from (2.16), the field operator becomes

o (+) o (+ -
ENr,t) = B0, 1) + BD e, 1), (2.76)
with
~ (+) = .o mht») =§fart—p
By ) =83 ey Seamkal0)e ™1, (277)
and
(+) ok —i - 2 ik (r—r
B, T._anﬁwmoﬁm Etmo#mm.y??».aﬁumf 4)
i ) r
X \. dt' 5_ (t')e!(@Wr—wal(t' 1) (2.78)
0

&+ 3
Here E; V?.t& describes the free evolution of the electromagnetic field, in

the absence of the atomic scatterer; E Mi?_..& is the source field radiated by

the atom. It remains to perform the summation and integration in (2.78).

L S i
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The summation over k is performed by introducing the density of states
(2.29) and converting the sum into an integration:

B t) = i nt 3 \ T .\ "in6df \ i
mﬂwmonu + Jo 0 0

t
% Ewm?»ﬁmw.» . &uuvmm?z.\& oomQ\ d’ :I?JMK&IE&X%ISH
(1]
(2.79)

we have chosen a geometry with the origin in r-space at the site of the atom
and the k.-axis in the direction of . One polarization state may be chosen
perpendicular to both k and d;2, as in Fig. 2.2, and for the second we can
write

Eraa (Br,ag - d12) = —€x 2, d12sina = —(dy2 x k) x k, (2.80)
where k is a unit vector in the direction of k. Setting
.mH.....comm+wumm=mn0m&+mem_=mm5ﬁ_ (2.81)

where kg, ky, and # = r/r are unit vectors along the Cartesian axes in k-
space, the angular integrals are then readily evaluated to give

& n+v

(r,t) = (diz % 7) % _...\ dww — —iwa (t+r/c)

ma.umnou

3 .\ dt' &_ (') —t=r/c) _ g=iva(t=r/c)
1]

x .\ “&‘ma Em,,?é\.x?yin;. G.mwv
0
Now, since the transformation (2.74b) removes the rapid oscillation at the
atomic resonance frequency, @_ is expected to vary slowly in comparison with
the optical period - on a time mn&m characterized by =1 ~ 10785 (for optical
frequencies), compared with w3’ ~ 1071%s, Thus, for frequencies outside the
range —100y € w —wy < Sc? say, the time integrals in (2.82) average
to zero. This means that over the important range of the wmaumunw integral
w? ~ Wl +2(w— €>u€\_ varies by less than 0.01% from w? = w?. We therefore
replace w? by w3 and extend the frequency integral to —co. We then find

(+)
E () .
= YA (dyy xF) x 7 TL.@;%E \ dt' 5_ ()8t —t—r/c)
dregcr 0

i
_ _wl._psﬁ?l&.\ d' g_(t')6(t' -t + w\nv_
0

2
.. ) % 7 -y :
e (dig x7) x Fo_(t—7r/c) (2.83)
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This is precisely the familiar result for classical dipole radiation with the
dipole moment operator dy20_ in place of the classical dipole moment.

Since thermal effects are negligible at optical frequencies (hws >> kpT),
we will take the reservoir state to correspond to the vacuum electromagnetic
field — the thermal equilibrium state at T = 0. Then, the free field (2.77)
makes no contribution to normal-ordered correlation functions such as (2.71)
and (2.72); thus, from (2.83) we may now write

GOt +rfe,t+rfc+7)= f(r)op()o—(t + 7)), (2.84)
and
COW+r/e,t+r/c+7T)=f(r)os(t)or(t +T)o_(t+ mo-(t)). (2.85)

f(r) is the geometrical factor

8
Hedm AEMREV mem_ (2.86)

dmegc?) T2

where @ is the angle between d;3 and r. (Recall that » measures positions
with respect to an origin at the location of the atom.)

2.3.2 Master Equation for a Two-Level Atom
Driven by a Classical Field

In deriving the master equation for resonance fluorescence we may go directly
to (1.34), with sy, s9, I, and I identified as in (2.17). We meet only one
minor difference from our treatment of spontaneous emission in proceeding
from this equation to the final result: The reservoir operators in the interac-
tion picture are again given by (2.18); but the system operators 5; and &,
are now given by

Hiy=o_(t)= T\E \o naxm%q_ o_ ee—%.\a \H_ _&i&w%
(2.87a)

Sa(t)y =0o.(t) = m%?\&.\an&\mmﬁ& oL mﬂv—l?xﬂ.\“hﬁ.ﬁm@& :
(2.87hb)

where Hg includes the interaction with the laser. What effect does this in-
teraction have on the atomic damping? It will turn out, in fact, that any
changes in the treatment of the damping are negligible under normal condi-
tions. However, let us spend some time discussing this question anyway so
that we have an idea of the approximation involved. The same approximation
is made, often without mention, in laser theory and in cavity QED.
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Equations (2.87) are just the formal solutions to the Heisenberg equations
of motion for the atom-field interaction described by Hamiltonian (2.68a).
These equations are given by

1
o- = gylo-1 Hsl

d
= —itwalo_,0.] + ».AMMV e wAtlg_ 4]
= —fwo_ —1 mmm_v e iwaty (2.88a)
and, similarly,
Gy =iwa0y +i Ammu eaty,, (2.88b)
. d —i : d L8]
6, =2i ﬁmhmwv e WAty — 24 mmm.ua Alg_. (2.88c)
Defining
Gr = oge At L g elwat (2.89a)
iy = gpe At — g_eivAt, (2.89b)
(2.88a)—(2.88c) become
o =0, (2.90a)
ay = 20, (2.90b)
by = — 5y, (2.90c)
where y
2= Ava . (2.91)
h
In particular, from (2.90b) and (2.90c),
b, =—$2%0.. (2.92)

Then, for an atom initially in its lower state [(5,(0)) =0, {o:(0)) = -1,
{o.(t)) = —cos 21, (2.93)

2 is the Rabi frequency [2.30]; the frequency at which the .RBE periodically
cycles between its lower and upper states, following absorption from the laser
field with stimulated emission, then again absorption, and so on.

The general solution to (2.90) is
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51(t) = 0-(t) = e ™4 [o_ + 3(1 — cos 2t) (o4 ~ 0_) — Li(sin 2t)a,],

(2.94a)

8a(t) = 04 (t) = e“4* [0 — (1 — cos Rt) (04 — 0_) + 3i(sin 2t)o,],
(2.94b)
where 0. = 04(0), o~ = 0_(0), and ¢, = 0.(0) denote operators in the

Schrédinger picture. Our derivation of the master equation for spontaneous
emission proceeded from (1.34) with 5;(t) and §(t) given by the expression
(2.94) taken in the limit 2 — 0. The interaction with the laser field has
introduce terms modulated at the Rabi frequency. Now, there is no difficulty
with substituting the full solutions (2.94) into (1.34) and continuing by per-
forming the time integrals as before. The number of terms to be considered
is increased nine fold, however, and we do not want to churn through all of
this algebra if it is not really necessary. A quick review of our calculation for
the damped harmonic oscillator will show that the oscillatory terms in 51(1)
and 5(t) only specify the frequencies at which the system interacts with the
reservoir; they determine the frequencies at which we evaluate the reservoir
coupling constant and density of states. The final result following from (2.94)
will then be an equation that contains three terms, each proportional to one
of the three damping constants y(w4), Y(wa+92), and (w4 — £2), where Y(wa)
is given by (2.21), and y(wa + 2) and (w4 — 2) are similarly defined with
the reservoir coupling constant and density of states evaluated at shifted fre-
quencies. At optical frequencies and reasonable laser intensities wy ~ 10'%,
and 2 < 10 (this corresponds to 100 times the saturation intensity for
sodium). Then, from (2.33),

Ywa £+ 02) = Y(wa)(1 £ 2/wa)® = Y(wa)(1 £ 302/wy). (2.95)

Thus, ¥{wx + 2) differs from v = y(w4) by less than 0.01%. We therefore ne-
glect §2 compared with wy4. This is best done in (2.94) rather than at the end
of a lot of tedious algebra. Setting 2 to zero in (2.94) is equivalent to deriving
the master equation in an interaction picture with Hg replaced by the free
Hamiltonian wm&mq.«. Then the damping terms in the master equation for
resonance fluorescence are the same as those derived for spontaneous emis-
sion. Neglecting thermal effects (7 = 0), the master equation for resonance
Jluorescence is then

p=—ijwalos, p] +i(02/2)[e" ™At + erty_, o]

+ Wamqlba{ —040_p— posLo_). (2.96)

In fact, a similar approximation was made, without mention, in our derivation
of the scattered field, where we assume o_ oscillates at the frequency wy
[Eq. (2.74b)]. Further discussion of these issues, with specific consideration of
their relevance in the Scully-Lamb theory of the laser, is given by Carmichael
and Walls [2.36, 2.37].
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Note 2.3 Recent work by Lewenstein et al. [2.38, 2.39] describes a situation
in which the near equality of the damping constants y(w4), v(wa + £2), and
y(wa — £2) does not hold, This happens for an atom inside an optical cavity
when the interaction between the atom and the vacuum modes it sees through
the cavity mirrors significantly perturbs the free-space interaction between
the atom and the vacuum field. Under these conditions the vacuum modes
which are filtered by the cavity have a Lorentzian density of states that can
vary considerably at the frequencies wya, wa + 2, and ws — §2. The consequent
changes in the three damping constants alter the widths of the peaks in the
fluorescence spectrum. Lewenstein et al. formulate their treatment of this
effect in terms of non-Markovian equations for the damped atom. This is
not necessary, however, if the Lorentzian feature in the density of states is
narrower than (or similar in width to) the Rabi frequency, but is still much
broader than the linewidths y(wa), v(wa + §2), and y(ws — 2) (computed
with the altered density of states). The method of Carmichael and Walls
[2.36, 2.37] is appropriate for these conditions and leads to a Markovian
master equation; but one in which the variation of the density of reservoir
modes at the three different atomic frequencies is taken into account.

2.3.3 Optical Bloch Equations and Dressed States

Using the quantum regression theorem, our derivation of the correlation func-
tions appearing in (2.84) and (2.85) will follow directly from the equations of
motion for the operator expectation values (¢_), (¢4}, and (o.}. Using the
master equation (2.96), these are given by

(6_) = —iwa(o_) — i(R/2)e“Ho,) — wﬂq;r (2.972)
i

(04) = iwalo4) +i(2/2)e™4 " (0;) ~ 3(o+)s (2.97b)

(62) = iR y) — i M o) — (o) +1).  (297c)

These are the optical Bloch equations with radiative damping, so called for
their relationship to the equations of a spin-} particle in a magnetic field
[2.40]. They combine the terms describing the atom-field interaction given by
(2.88) with the spontaneous decay terms in (2.37).

Note 2.4 When the phase destroying term (v,/2)(o2p0; — p) in (2.66) is in-
cluded in the master equation, (2.97a) and (2.97b) have v replaced by y+27,.
The energy and phase decay times 1/ and 2/(y+21,), respectively, are often
denoted by Ty and T% in correspondence with the traditional terminology for

magnetic systems.

If we neglect the effects of spontaneous decay, which is valid for short
times, the optical Bloch equations are equivalent to the classical equations
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for a magnetic moment m in a rotating magnetic field B. With (o) and
{o,) defined as in (2.9), we can write

m =B xm, (2.98)
where
m = (02)2 + (0y)f + (02)2, (2.99)
and
B = —(coswat)i — (2sinwat)f +wa2; (2.100)

&, 9, and Z are orthogonal unit vectors. A strong intuition for the dynamics in
resonance fluorescence can be drawn from this analogy. From (2.98) it follows
that

mﬁa.gvﬂmmxsd.q;+3.ﬁmx3u
=0, (2.101)

since m and B x'm are perpendicular vectors. Thus, m is a vector of constant
length. In particular, for pure states, with

p= )] = (c1]1) + c22)) (1lef + (2lc3), (2.102)
we have
{0-) = pn =cjcs, (2.103a)
(04) = P12 =c1c3, (2.103b)
(02) = paz2 — p11 = |e2® — |ea (2.103c)
and

m-m=(0;)% + Aaw.vn + (02)?
=4{o_){(o4) + (0:)?
= (leaf? + leaf?)’. (2.104)

Thus, for a pure state m - m = 1, and (2.101) expresses the requirement
that probability be conserved. Here the state of the two-level atom can be
represented by a point on the surface of the unit sphere (the Bloch sphere)
as illustrated in Fig. 2.3(b). Dynamics on the Bloch sphere give a simple
interpretation for the solutions (2.93) and (2.94). We define a rotating frame
of reference which follows the rotating magnetic field, writing

coswal  sinwat 0
m=R,(wat)m = | —sinwat coswat 0 |m, (2.105)
0 0 1

where R, generates rotations about the z-axis. The motion of m is then
determined by a magnetic field frozen in the & direction:
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i = (B — wal) x m, (2.106)

where B = R, (wat)B and
B —wpt = —04. (2.107)

The modulation at the Rabi frequency shown by (2.93) and (2.94) simply
corresponds to the precession of 7 about the static magnetic field B — w42

[Fig. 2.3(c)].

(02)

Fig. 2.3 Representation of atomic dynamics on the Bloch sphere: (a) the rotating
magnetic field (2.100), (b) the atomic state represented as a point on the Bloch
sphere, (c) precession of the atomic state in the rotating frame (2.105).

This simple view of the dynamics no longer provides the complete picture
when the dissipative terms are reintroduced. Then (2.97a)-(2.97¢) give

L (m - m) = 2((02)(6) + (@) (03) + (0:)(62)
—y[()? + (0% + 203} (o) +1)]

—y(m-m—=1) = y((c:) +1)% (2.108)

il

Il

Now the length of m is not conserved. This is not inconsistent with (2.104).
Probability is still conserved, but the atomic state has become a mixed state,
rather than a pure state; therefore (2.104) no longer gives a valid interpreta-
tion for m - m. Dynamics cannot be formulated on the Bloch sphere. In fact,
evolution proceeds to a steady state, with

m-m=1-((o.) +1)> =1—4p%, (2.109)

which has the state m within the unit sphere. Since m - ™ must be greater
than zero, it follows that pss < w in the steady state. Thus, interaction with
the laser field can at best give equal probability for finding the atom in its
upper and lower states — it cannot produce population inversion. Of course,
a higher probability of excitation is possible during transients, which for an
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intense laser (large enough 2) closely resemble the precession on the Bloch
sphere which we have just described.

Exercise 2.4 Solve the optical Bloch equations (2.97). Show that, for an
atom initially in its lower state,

efwat (g (t)) =+ e L T — e~/ Anom_w 5t + (/4 sinh &g

21+Y? 5
+iv/2Y e~ (319t SM %) picih 6, (2.110)
1 2_—(3v/4)t (3v/4) .
(o:(1)) = 13792 14+Y% cosh 6t + 5 sinhét)|, (2.111)
where z\w.
Y= %_ (2.112)
2
5= @u -2 = m,\p —8Y?2. (2.113)

In the limit v << §2, vt << 1, show that these solutions reproduce the
dynamics on the Bloch sphere discussed above.

A complementary view of the atomic dynamics is given by the dressed-
states formalism whose application to-the problem of resonance fluorescence
has been championed by Cohen-Tannoudji and Reynaud [2.41]. In this for-
malism we focus on the eigenstates of Hg, from which a full picture of the
dynamics without damping can be constructed in the Schrédinger picture. It
is usual to develop the dressed-states formalism around the fully quantized
Hamiltonian

Hg = Lthwao, + hwpa'a + h(kaoy + k*alo_), (2.114)

rather than the time-dependent (semiclassical) Hamiltonian (2.68a). Here af
and a are creation and annihilation operators for the laser mode, and the free
Hamiltonian fiwsa’e generates the time dependence — a(t) = a(0)e~4*; to
make the connection with (2.68a) we must take fix({a) = —dE.

Without the atom-field interaction the eigenvalues of Hg define the infi-
nite ladder of degenerate energy levels illustrated in Fig. 2.4(a). States |n}|2)
and |n 4 1)|1) correspond to an n-photon Fock state plus an excited atom,
and an (n + 1)-photon Fock state plus an unexcited atom, respectively; both
have the energy ? - wu hiwy. This degeneracy is lifted by the interaction.
The size of the resulting level splitting may be found, together with the new
energy eigenstates, by diagonalizing the coupled equations

m2) \_[(n+3)hwa VAt Thst In}|2)
mA_a+:_:v1 Vntihe (n+3)hw, h_:iv_cv. (2.115)
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Fig. 2.4 (a) Degenerate ladder of energy levels for the uncoupled nu_o..n.mmuﬁ system.
(b) Level splitting due to the atom-field interaction. Reading from left to right, the
illustrated transitions have frequencies wa, wa — 2, wa + §2, and w4.

The new energy eigenvalues are
Ens = (n+ 3)hwa £ vn+ 1hjx|. (2.116)

If the laser field is in a coherent state with mean photon number 7 >> 1, we

a it
ERpER dE = hlx||(a)] = hlx|VA,

and for all the populated eigenstates

Epx = (n+3)hws + mﬁmwm v = (n+ 3)hwa = FhA. (2.117)
Transitions between the eigenstates of the interacting atom-field system iden-
tify the three frequencies wa, wa + R, and wy — _a.maoaﬂunmuom in (2.94)
[Fig. 2.4(b)]. The three damping constants that arose in our treatment of the
Auorescent decay process (Sect. 2.3.2) may now be associated with fluores-
cent transitions between the states of the coupled atom-field system — the
so-called dressed states. If we suppress the nfws which distinguishes states
of the Fock hierarchy, the remaining four-level structure gives the dressed
energies —3h(wa F £2) and +3 h(wa £ £2) for the atom.

Exercise 2.5 Construct the eigenvectors corresponding to the eigenvalues
(2.116) and hence find explicit expressions for the dressed states as linear
combinations of the states [n)|2) and [n + 1)|1). For large n the dressed
states approximately factorize as the product of a Fock state for the field
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and linear combinations of the states |2) and |1) for the atom (neglect the
difference between |n) and |n +1})). Locate the atomic states obtained after
the factorization on the Bloch sphere.

Note 2.5 The dressed states are often referred to as the dressed states of
the atom. Clearly, the states obtained by diagonalizing (2.115) should not
really be referred to in this way, since these states are vectors within the
Hilbert space of the atom plus the field. There are, nonetheless, conditions
under which it is appropriate to ascribe the “dressing” to states of the atom
alone — in the large n limit mentioned in Exercise 2.5. There are a number
of ways to give a mathematically well-defined meaning to this limit. If we
start within the Hilbert space of the atom plus quantized field mode, we
must define an approximation scheme that maps all the four-level structures
in Fig. (2.4b) (with n = 7) to a single four-level structure that does not
distinguish between photon numbers, and in this way defines the levels of
the dressed atom. Perhaps a more satisfactory approach is to begin from the
semiclassical Hamiltonian (2.68a). This Hamiltonian is time dependent and
does not, therefore, define a normal eigenvalue problem. But it is periodic in
time. For such a Hamiltonian periodic solutions to the Schrodinger equation
and their associated quasienergies play the role of energy eigenstates and
eigenvalues [2.42, 2.43). It is easy to find these periodic states and quasiener-
gies for the Hamiltonian (2.68a): first transform to the interaction picture,
diagonalize the resulting time-independent Hamiltonian, and then transform
back to the Schrédinger picture. The quasienergies found in this way are the
energies Iww?i F42) and +wm?§ =+ {2) defined above as the dressed energies
of the atom.

2.3.4 The Fluorescence Spectrum

We might expect the spectrum of the fluorescent scattering to show features
associated with the three transition frequencies between dressed states, wy,
wa + 2, and wy — 2. Although this seems an obvious conclusion to draw
from Fig. 2.4(b), there is really little basis for accepting it a priori. For weak
excitation by monochromatic light, the fluorescence spectrum is shown by
perturbation theory to also be monochromatic [2.21] - it does not have the
linewidth of spontaneous emission. This teaches us that the scattering pro-
cess 18 not simply a sequence of absorption and emission events; there is
some coherence involved; a view of the quantum dynamics based solely on
discrete transitions between atomic energy levels is not to be trusted. More-
over, consider the mean scattered field given by (2.83) and (2.110). For strong
excitation this does contain components at the shifted frequencies wy =+ 2.
These decay, however, as transients and in the long-time limit

im (B wi woaled ¥ ON oo
»Hlu.ﬂm—oﬁmh A._..«nvv = |%A&un x ﬂu x w.h.umﬂ T M\MVG at—r/ v.
(2.118)
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Equation (2.118) suggests monochromatic fluorescence, m.a agreement with
the established weak-field result. The dynamical picture is one of no&ﬁ.wﬂ
reradiation from an induced dipole oscillator, the excitation strength entering -
only to saturate the oscillator amplitude. . ‘

Surely, however, this essentially classical picture is w_.mo incomplete. The
quantum-mechanical dipole operator lives in a probabilistic world, and S.a_.m,
fore we should allow our oscillator amplitude the opportunity to acquire a
stochastic component. Then, in general, the fluorescence spectrum should not
be calculated from the mean scattered field, but from the Fourier nzt._m.ﬁoﬂa
of the autocorrelation function (2.71). Using (2.84), for the long-time limit,

this gives = ,
S@) = 1)z | dre (o, 0o (e (2119)

where (04 (0)0—(7))ss = lim¢—oo {04 (t)o— (2 + 7)). Thus, in a rotating frame,
the atomic scatterer decays to the steady state
; T i
Am.u_uvnn =et h»AQ.umvmw = nwwqmlg :
M .
AQHvuu = 1 u\n .

(2.120a)

(2.120b)

However, fluctuations about this steady state can occur, described by the
operators

L35 = 53— (Fxhs (2.121a)
Ao, = 0y — (Oz)ss. (2.121b)
These fluctuations are intrinsic to the quantum mechanics. Now the fluo-

rescence spectrum decomposes into a coherent component, Bﬁoﬁvg&um to
(2.118), and an incoherent component arising from quantum fluctuations:

S(w) = Scon(w) + Sinc(w), (2.122)
with
Sen) = f(r)ge [ dr e (@)
- SW a H\Mwun 8(w —wa), (2.123)
and
) = 1) [ e M5 005 (e (2120

Let I.on and iy denote the coherent and incoherent intensities obtained
by integrating (2.123) and (2.124) over all frequencies:
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Icon = HT.V Am.+ vnu Am.l vﬁ_

1 ¥
= .ﬁﬁﬂvm _C. Fi u\uum_

(2.125)

and
Iinc = f(r)(A6445_ )
= f(r) ((545_)ss — (4 )os (G )ss)
= F(P) 31+ (02)as) = (0 )ee (6]

1 Y

.‘aﬁ»..uw AH + W\uvw ®
We can now make a judgment about the qualitative form of the spectrum.
At weak laser intensities, the ratio Linc/Ion = ¥2 = 202%/42 is very small,
and coherent scattering dominates, in agreement with the results from per-
turbation theory. However, Iinc/Icon increases with the laser intensity, and
the incoherent spectral component will dominate at high laser intensities.
Since the relaxation, or regression, of fluctuations around the steady state
must surely follow a modulated decay similar to that shown by (2.110) and
(2.111), we expect this incoherent spectrum to show sidebands at wy % £2.
The general dynamical picture must then be constructed as something of a

mixture, showing both elements of coherent reradiation and discrete quantum
transitions.

(2.126)

Note 2.6 The face the quantum dynamics shows to us depends on the ques-
tions we ask, as is generally the case in quantum mechanics. Illustrating this,
we might note that the radiated intensity admits an interpretation in terms
of discrete quantum transitions even at weak excitation, where I.op () domi-
nates. If I(r) = Ion(7) + Line(7) = f(r)(5.4+5-)ss is the total intensity at the
position 7, we can integrate over a sphere of radius r (centered on the atom)
to obtain the radiated power: .

2w T
P = 2egc \ d¢ \ dfsin0r2I(r)
0 0

= 2 oﬁisw npnvuﬁ\ua%.\.a%mmnu mv (G46-)

— %\ areoc?) \ Jo o dielld

_(_1 twid

y h&s‘mc 3hed Fiw gy Am__com_mv

=7 hwa (2| pes|2). (2.127)

The radiated power is just the product of the atomic decay rate, the photon
energy carried away per emission, and the probability that the atom is in
its excited state. We have an interpretation in terms of discrete spontaneous
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emission events, despite the fact that the weak-field spectrum is not consistent
with these dynamics.

The approach we have outlined for calculating the fluorescence spectrum
is essentially the same as that followed by Mollow [2.23] in his original work.
It certainly leads to a simple calculation compared to some of those that
rederived Mollow's result (see Cresser et al. [2.34] for a review). We need
only solve for (A& (0)AF_(7))ss using the optical Bloch equations and the
quantum regression theorem. From (2.97), (2.120), and (2.121),

WEPV = —i(2/2)(40,) — wﬂmuv_ (2.128a)
L (46,) = i(2/2)( o) - 1(45.), (2.128b)
wubquv = i(A54) — iR(A5_) — v(Ad), (2.128¢)

and the quantum regression theorem gives
WE?SE“E? = M(A54(0)AS(T))es, (2.129)

where An
As=| As, |, (2.130)

Ao,

and ;
1 0 &\\a\w

mM=-I o T 7N (2.131)

2\iay —ivaYy @ 2
The desired correlation function is the first component of the vector {Ad4(0)
As(7))ss- The initial conditions are given by
A.W.+ mwlvua = _Qw+ vuu nm.lvmm
(A5 As)ss = (6404 )ss — (4)2
Am.+QLoa a1 Am+vwm?.uvmw
.Wﬁ“_. + AQ.vawv - Am+vmuAQ.Ivuw
= Am.._. va 3
|Am.+vuuh“_. —+ An_.uvuww
where we have used (2.25), (2.45), and

o410 = 2)(1](12) (2] — [1)(1]) = —2)(1] = —oy, (2.132a)
0-0x = |1)(2(12)(2] — [1)(1]) = [1)2| = 0. (2.132b)

From the steady-state averages (2.120) we obtain
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1 ¥ y?

AGLAS)s = = 1
A T4 v MAH.._..M\.NVM HJ\MH\

(2.133)

Equation (2.129) can be solve by finding a matrix S to diagonalize M.
Multiplying (2.129) on the left by S,

2 5(464(0)A5(r) = (SMS™)S(26,(0) As(r))s,  (2130)
and, formally,
(AG4(0)As(T))es = S~ exp(A7)S(AG, As)se, (2.135)
where
A= SMS™ = &pmhum,!mm;r% lmv (2.136)

is formed from the eigenvalues of M, and the rows (columns) of S (5 ~!) are
the left (right) eigenvectors of M [2.44]; § is defined in (2.113). After some
algebra we obtain the first-order correlation function for resonance fluores-
cence

(464 (0) 25— (7))
1 Y2 o

41+Y2
} ¥ S\ﬁ - _

_i2_ 7 ly_y2 _5y? [(3v/4)-6]r
mai\nl P I

_ Wu\.|,uu ﬁ— - u\m _ H”_. - .wu\nu ﬁ\w\#u_ m.l:w..q\&.rm_.ﬂ.
8(1+Y?2) 6 (2.137)

Explicit expressions for the incoherent spectrum can be calculated from
(2.124) and (2.137) as an exercise. In general, the spectrum is given by a
sum of three Lorentzian components. It is easy to see that in the strong-
field limit, Y2 >> 1 (£2% >> +?), where incoherent scattering dominates,
this calculation gives the well-known Mollow, or Stark, triplet. Figure 2.5
illustrates the dependence of the incoherent component of the fluorescence
spectrum on the laser intensity.

2.3.5 Second-Order Coherence

We have identified “coherent” scattering with a monochromatic spectrum.
More precisely, a monochromatic spectrum only implies first-order coherence
- i.e. when (A&, (0)AG_(7))ss vanishes the first-order correlation function
factorizes:
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Fig. 2.5 The incoherent fluorescence spectrum. Spectra are plotted as a function
om.mﬁEIELx\« for ()Y =03, (ii)) Y =15, (i) ¥ = 2.7, (iv) ¥ = 3.9, (v) Y =5.1,
and ¥ = 6.3.

GO (1) = F(r) (04 (0)0—(T))ss = F(r) (04 ss (0 )esE ™",

where Qm;i m:ET.BQE?TIu_Hramzﬁgﬁmmmuonw.ﬁmm_uo&_._ﬁrﬁ.-
order correlation functions. Do they factorize in a similar fashion? Is the
scattered light in the weak-field limit — where the spectrum is monochromatic
— coherent to all orders, as would be the radiation from a classical dipole?
It is not difficult to see that it is not. We need look no further than to the
second-order correlation function; the scattered light does not have second-
order coherence. The lack of second-order coherence is associated with the
phenomenon of photon antibunching. It tells us that the m:oSwnmzam from
a two-level atom is nonclassical, even in the weak-field limit where a model
based on classical dipole radiation gives the correct spectrum.

The second-order correlation function is proportional to the probability
for the detection of two photons separated by a delay time 7. It is measured
in delayed photon coincidence experiments [2.45, 2.46).

Note 2.7 Actual photodetection probabilities depend on such things as the
photon counting time and the collection and quantum efficiencies Om. the de-
tector. In (2.127) we saw that the photon emission rate Emc a 47 solid angle
is Y{040-)ss (the radiated power is hway(040)ss). Ocnmﬂmu a detector lo-
cated at position r which accepts photons over the small solid mam._w AR, m.E_
has a detection efficiency 1. The single-photon detection probability mE._‘zm
a short counting interval AT << 4~ is the vn.aznn of the energy mmum._@
92e0( BV E(H))ss, a factor ¢/fuwy which-convert this into a photon flux density,
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the detector area Af2r?, photon counting time AT, and quantum efficiency

i

2epc

hw A

AQsin? 6
87 /3

After integration over all solid angles this gives p(1) = nyAT (0,10 ) =

NYAT(2|pes|2), in agreement with (2.127). The probability for detecting a
first photon and a second photon after a delay 7 is

p(1) = nAT(Ar*)—G{)(0)

= nyAT (040 _)ss. (2.138)

Fiw g

2
»(2,711,0) T%E@J mei

sin? 2
[mary: 7| 4001 (- (7)o O (2139)

This result is proportional to the second-order correlation function (2.85).

In the long-time limit, second-order coherence requires the second-order
correlation function to factorize in the form

GD(r) = f(r)(04(0)0+(T)o_(1)0_(0))es = [F(7){04)es{0—Yes] 3

this factorization must hold in addition to the requirement for first-order
coherence stated above. It clearly never holds for 7 = 0, since (04)2 and
(0-)2 are not zero [from (2.120a)] but 62 = ¢2 = 0. The latter simply
states that a two-level atom cannot be sequentially raised or lowered twice;
two photons cannot be absorbed or emitted simultaneously; the detection
of one photon sets the atom in its lower state, after which a second photon
cannot be detected until the atom has been reexcited. We might predict
then that the probability for detecting two photons is just the probability for
detecting the first photon,

p(1) o f(r)(040-)as = f(1)(2]psl2),

multiplied by the probability for detecting a second photon at the time t = T,
given that the atom was in its lower state at ¢ = 0:

P(2,71,0) & f(r){(040-)(T))p0)=p1) 11 = F(){212(T)12) p0)=1y11-

We are suggesting that the second-order correlation function may be factor-
ized as a product of photon detection probabilities, with

G (1) = f(r)*(2lps)2)(21p(7)12) po)=i1y 1]- (2.140)

This is clearly zero for 7 = 0, and gives independent detection events for
large 7, as p(7) — pes. We will use the quantum regression theorem to prove
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this result. (As with the calculation of the fluorescence spectrum, other ap-
proaches can be used to obtain this result; Kimble and Mandel, for example,
derive (2.140) working entirely in the Heisenberg picture [2.47).)

First, let us consider the formal solution to the Bloch equations for time-
dependent expectation values. In a rotating frame, (2.97a)-(2.97c) can be
written in the vector form

(8) = M (s) + b, (2.141)
where i,
o_
s=|64], (2.142)
o,

M is the 3 x 3 matrix given by (2.131), and

0
=—]0]. (2.143)
1
Then d
w?IELs = M((s) + M™'b), (2.144)
= (s(t)) = —M ~'b + exp(M1)((s(0)) + M ~'b). (2.145)
Now

GP(r) = f(r)*(0+(0)04(1)o-(T)o—(0))ss
L .:___..Vw W :Q..-leun + AQ‘*AQUQNA._.VQ.IAOUVEH__ hmwﬂﬂu

where we have used (2.25a). We can calculate the correlation function
(04(0)02(7)o—(0))ss using the quantum regression theorem. It is the third
component of the vector (04 8(7)0_)ss. To find the equation of motion for
this vector, the quantum regression theorem tells us to remove the angular
brackets from (2.141) (b is a constant vector multiplied by the expectation
of the identity operator), multiply on the left by ¢, (0) and on the right by
o_(0), and replace the angular brackets; thus

<

= {04(0)8(T)0—(0))ss = M (04(0)8(7)—(0))ss + (040 )ssb

=M _HAQ+ (0)s(7)o—-(0))ss + AQ.+QIVEL.E.IHE.
(2.147)
The formal solution to this equation is

AQ.T_“Ov.mT.vQImOVme = |AQ+Q.I vﬂb\.m.i_.?
+ exp(MT) [(04.80_ ) + (040-)sa M ~1B],
(2.148)
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with initial conditions
AQ+m.IQI vua
(0+80_)os = | (04540 )ss
(040.0_)s
0

=(040-)ss| 0 |, (2-149)
-1

where we have used (2.45) and (2.132). Now (2.148), (2.149), and (2.145) give
{04(0)8(7)o-(0))ss

0
= (040 )ss{ ~M o+ exp(M7)|| 0 |+Mb
-1
= (040-)ss(8(7)) p0)=n1) 1 (2.150)
0
Here, we have noted that | 0 | is simply the initial condition (s(0)) for an
-1

atom prepared in its lower state - i.e. with p(0) = |1)(1]. Substituting the
third component of (2.150) into (2.146) establishes our result;

G(r) = f(r)2(04+0-Yss 3 (1 + (0:(7)) pio)=iya))
= F(r)?(2]0ss]2)(210(7)[2) p(0) =123 1)- (2.151)

Note that this calculation is independent of the form of M. Thus, while
(2.131) only gives M for perfect resonance, (2.151) also holds for nonresonant
excitation.

Note 2.8 The factorized result we have obtained in (2.151) actually follows
very simply, and quite generally, from the quantum regression theorem writ-
ten in the more formal form (1.102):

GR(1) = f(r)*(04+(0)0+ (7)o (7)o (0))ss
= f(r)*tr{e” [0_(0)puo4(0)] 04 (0)o_(0)}
= f(r)*tr{e“T[|1)(2lpa |2 (1] 12)(2]}
= F(r)%(2]pss|2) (2le (J1(1]) [2);
(2]e7(]1)(1])|2) is just a formal expression for {2lp(7)12) poy=1yc11-

Equation (2.111) provides the solution for (7.(t)) p(0)=]1¢1| from which an

explicit expression for G2’ (r) may be written down. We normalize G (r) by
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its factorized form for independent photon detection in the large-delay limit,
and write the second-order correlation function for resonance fluorescence as

-1
@) = [ lim 62(n)] R ()

T—00

:Q.-_-Q‘!Vuwvl_. AH + AQuAﬂuvthuH_u::u

=1- QLEEAS%? I s mqv . (2.152)

I

6

This expression is plotted in Fig. 2.6. For a field possessing second-order co-
herence g2 () = 1; the two photons are detected Eam_umﬁ.&mnaw for all @mnm%
times; in this case a detector responds to the Eniai light by .v_.oa:n_nm a
completely random sequence of photopulses. This ?nmﬁm provides a refer-
ence against which the “antibunching” of photopulses is defined. .H,Jm curves
of Fig. 2.6 actually show two nonclassical features — wwmﬂE.mm ”Drp& are Ewmzzu_f
sible in a correlation function generated by a classical m._mm..ﬁouﬁu. stochastic
process. Let us look at the definitions of photon antibunching that have been

given in terms of each.

20

L[\ (i)

.Qmm;ﬂy 1.0

0.0

i i - ion function (2.152): (i) 8Y? =
. 2.6 The normalized second-order Qm..n&ﬁ_oz 15:
M.”uwu < 1 (6 = y/4); (i) 8Y2 =1 (§ = 0); (iii) 8Y% =400 > 1 (6 =~ if2).

2.3.6 Photon Antibunching and Squeezing
All of the curves in Fig. 2.6 satisfy the inequality
920 < 1. (2.153)

This is the definition of photon antibunching given in Refs. _m.mm&.wo., w.ww_.
The sense of this definition is actually more clearly understood by considering
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a closely related quantity to mm:.&. Imagine a photopulse sequence gener-
ated by a fast photodetector — response time much faster than min(y~?, 2-1)
— monitoring the fluorescence. The quantity we will focus on is the proba-
bility density wss(7) for a delay T between successive photopulses, a quan-
tity we refer to as the photoelectron waiting-time distribution. This can be
calculated as the probability density that, given a photopulse at time t,
there is also a photopulse at time ¢ + 7, conditioned on the requirement
that there are no photopulses in the intervening interval; thus, the pho-
topulse at time ¢+ 7 is the nezt photopulse in the sequence. For comparison,
AT-[p(2,7;1,0)/p(1)] = AT-'p(1)gP(r) [Eqs. (2.138) and (2.139)] gives
the probability density for a photopulse at t + 7 without any resiriction on
photopulses in the intervening interval. The distribution we,(7) must satisfy

.\ “dr wes(T) =1, (2.154)
0

since the delay between photopulses must take some value between zero and
infinity; AT~ wwﬁv.&m V?.u does not have to satisfy such a condition.
To clarify the notation we write

AT =n| & [ d2sin?0 (o4 )
solid
angle

= 19040 )sss (2.155)

where we have allowed for detection over an arbitrary solid angle, and
0 < 7' <1 is the product of the collection and quantum efficiencies of
the detector; y(¢+0_)ss is the photon emission rate. The functions Wee (T)
and (7'7(040)es) 02 () approach each other for T < Tav; Where 7o,
is the average fime between photopulses, since the probability for inter-
vening photopulses becomes small in this limit. In particular, we(0) =
?aio{afvsv humu (0). For longer time intervals, coherent scattering would
give the waiting-time distribution

Wes(T) = N'Y(04-0_)ss xp ( — 7/ Y(04.0_)ssT). (2.156)

In fact, a calculation of we,(7) for 7/ < 1 (which holds under the most readily
achievable experimental conditions [2.48, 2.49]) produces the result [2.50)

W (7) % (040 )as Te (= 1040 YT — e~

x mnom: 3+ uw\ hPaa_ &v_ (2.157)
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for the photoelectron waiting-time distribution of resonance fluorescence at
low detection efficiency. This expression satisfies (2.154) to EEmmw order in
o " 2 3
7' It should be compared with the expression for (nyloyo_ vmnummw (7) given
o
by (2.152). The two expressions agree for 7 < (M y(o040-)ss)” = Tay, but
wes(T) decays to zero for T > Tay as it becomes more and more unlikely that
the nezt photopulse has not yet arrived.

Note 2.9 Equation (2.156) can be derived by considering a random sequence
of photopulses, with a probability n'y(oL0o_)ss At for finding a photopulse in
any short interval At and a probability 1 —n'y(.0_)ss Al for not finding a
photopulse in the same interval. The probability for finding no photopulses
throughout an interval 7 = mAt, and then finding a photopulse in the interval

from 7 to 7+ At, is just

d___J.AQ+Q.I vmwb.h ﬁ.‘_. = daQAQ..TQr vuwbnv =

m
=n'7(04+0-)us AL M“

n=0

= aﬁia+qlv.mbm M m(m—1).-(m—-n+1)

n=0

AI n'y({o40— Vmubmvu
n!

= iﬁﬁva&w”o - wx B &T - ;ﬂlu

n=0

(= 7'v{o40-)ssAt)"
n! :

m!
(. —n)In!

(- (T4 Y at)"

X

X
On taking the limit m — oo, At — 0, with mAt = 7, this gives

Wee (7)dt = 7/ ¥(040_)ssdt €XP (- 7' {040-)ssT).

Now, in what sense does (2.153) imply an “antibunching” of photopulses?
Figure 2.7 illustrates the behavior of we(T) for the light mn.m.ﬁmnm& in reso-
nance fluorescence compared with coherent light of the same intensity. There
is unit area under both of the curves plotted in the figure [Eq. (2.154)], and
both distributions give the same mean time Tay between photopulses. Note,
now, that we have the equivalence

Mwyev <l = wy(0)= ﬁd\é?«*a.lvuwvh«mmuﬁcu < ._.__..QAQ.+Q.IVS.

Thus, (2.153) guarantees that e (0) falls below its value for coherent light of
the same intensity. Then with increasing 7, wes(7) must first rise above the
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Fig. 2.7 (a) Waiting-time distribution for resonance fluorescence [curve (i)] and
coherent scattering of the same intensity [curve (ii)], for ¥? = 1, and %' = 1.
(b) Rearrangement of a typical random photopulse sequence to account for the
change in the waiting-time distribution shown in (a).

exponential curve for coherent light, ensuring that both distributions have
unit area, and then fall below it once again to ensure that both distributions
give the same 7,,. We conclude that in comparison with coherent light of
the same intensity, on the average, photopulse sequences are redistributed
as illustrated in Fig. 2.7: some photopulses are moved from positions where
they separate two very short time intervals, to new positions where they di-
vide some of the very long time intervals into two. The result, as displayed
in Fig. 2.7, is that the very shortest and very longest intervals between pho-
topulses become less likely, and the intervals of intermediate length become
more likely. A move is made away from photopulse sequences showing bunches
and gaps, towards more regimented, evenly spaced, sequences.

Exercise 2.6 For perfect collection and detection efficiencies (7' = 1) wgs(7)
can be calculated from [2.50, 2.51]

wee(r) = (25(r)[2)ptor=iaycat = (215 (|1)(1])[2),
where the action of the superoperator £ on an operator Ois given by
£O = L0 —~y0_0oy,

with £ defined by the right-hand-side of (2.96). For these conditions show
that the photoelectron waiting-time distribution of resonance fluorescence at
unit detection efficiency is given by

Ve
||”_.G. — cosh &__.ﬂuu nwﬂmmu

— = (1/2)T
Wes(T) = e 2y 2
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with y

§ = 5 1-2Y2 (2.159)
Verify that (2.154) is satisfied and that the mean interval between photopulses
8 Tay = 7-12(1 + ¥2)/Y2 = mioFQIYLL = (photon emission rate)~?.
Plot wss(7) for 2Y? = 1 and compare it with the exponential we(T) =
(7/6) exp[—(y/6)7] obtained for coherent light of the same intensity.

The central feature of this definition of photon antibunching is that it is
made in comparison with coherent light of the same intensity. An alternative
definition adopted by Mandel and co-workers [2.48, 2.49] does not make such
a comparison. In addition to satisfying (2.153), the curves of Fig 2.6 also have

@' 0)=0, @"(0)>0; (2.160)

the prime denotes differentiation with respect to 7. Classically, .Qmw:,& must
decrease from its value at T = 0, or, of course, remain constant if the light
is coherent. Stated in terms of wss(7), no interval between photopulses may
be more probable than 7 = 0. Mandel and co-workers identify photon an-
tibunching with an initially rising mmwvnl. Since the most probable interval
between photopulses is then some 7 # 0, photopulse sequences show a dirth
of “tight” bunches in favor of somewhat larger photopulse separations, giving
alternative definition to the term “antibunched.”

This concept is drawn entirely from a comparison made within the pho-
topulse sequences for the antibunched light — there are more m.zmwﬁw longer
photopulse separation times than there are very short separation times. H.ao
comparison is made against the reference of coherent light of the same in-
tensity. It is actually possible for photopulse sequences to be bunched in the
sense of our previous discussion — with increased probability for short and long
photopulse separation times and decreased probability for intermediate sep-
aration times — and be antibunched according to this second definition. This
possibility is illustrated by Fig. 2.8. The converse also occurs, with (2.153)
satisfied and m_mm Xqu initially decreasing. Such behavior is seen in the forwards
fAluorescence from a single atom inside & resonant optical cavity [2.53].

The use of two definitions for photon antibunching might a_w a little con-
fusing; but it is not really a major problem. Both definitions identify non-
classical effects. We must remember, however, that strictly these are distinct
nonclassical effects. Both effects have been demonstrated in mxuump.mimsﬁm on
resonance fluorescence [2.33, 2.48, 2.49]. Of course, whenever mm%ﬁ.ou =0 [as
in (2.152)], the two definitions will be satisfied together. H.._,Q. definiteness we
will use “photon antibunching” in the sense of (2.153), which seems to be
more in accord with the traditional interpretation of the photon bunching of
Hanbury-Brown and Twiss.
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wss(7)/F

Fig. 2.8 Waiting-time distribution for light that is bunched in the sense of the
discussion below (2.153) and antibunched according to the definition (2.160) [curve
(i)]. An example of this behavior is shown in Ref. [2.52], Fig. 11(c). F is the mean
photon flux and curve (ii) is the waiting-time distribution for coherent light.

Note 2.10 The definition of photon antibunching given by (2.153) is equiv-
alent to the condition for sub-Poissonian photon counting statistics for short
counting times. A single-mode field illustrates this point:
a4
9®(0) = (a'a)~*(at"a?)
= (a'a)*[((a'a)?) — (a'a)]
1y 0 - @) — )

(R)? ’
where 7 = ala is the photon number operator. Then
@ -9
90— 1 ===, 2.161
) (2.161)

where the Mandel Q parameter,

((7%) — (A)) ~ (A)
(R)

((An)?) — (A)
=t 2.162

@) (2.162)
measures the departure from Poissonian statistics. Clearly, (2.153) is equiva-
lent to the condition for sub-Poissonian statistics, @ < 1. On the other hand,
when counting times are not short on the scale of the field correlation time,
the definition of @ involves integrals over field correlation functions; then
(2.153) is no longer equivalent to the condition Q < 1.

Q=
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Before we leave our discussion of photon antibunching, now is a good time
to introduce some of the ideas concerning “squeezed” states of the electromag-
netic field [2.54]. Walls and Zoller [2.55] pointed out that the light scattered
in resonance fluorescence is squeezed in the field quadrature that is in phase
with the mean scaitered field amplitude. This squeezing is closely _.m_mwmm. to
photon antibunching. We do not want to make a diversion into a detailed
discussion of squeezed states here, and anyone who is totally unfamiliar with
the subject may find it helpful to refer to the introductory article by Walls
[2.56]. We will return to the subject of squeezing in Volume II (Chap. 9) and
the discussion of background material is postponed until then.

When we write

9D(0) = ((040-)ss) " (02.0% )as (2.163)

it'is quite obvious that m__mwXB vanishes; we have discussed the simple reason
for this above. There is something more to be learned, however, if we look at
(2.163) in a slightly different way [2.57]. We may always regard the scattered
feld as the sum of a coherent component ﬁmmiv:_ which is E.awcmﬂoum._
to {o_)ss, and a fluctuating component described by the operator bhmi =
i) — (E$H)),,, which is proportional to Ao = g — (0-)ss. Looked at in
this way, (2.163) may be expanded along the same lines as ﬁr.o fluorescence
spectrum [Eqgs. (2.122)~(2.126)]; after transforming to a rotating frame, we

may write
gD (0) = 1= (A% + (46,45 )a) *[4%4(: A55)" en
+4ARe(e' ((A54)2 85 )a) + ((A51)(A5-))ss
~ ((8445))"], (2.164)

where { : : ) denotes the normal-ordered average (with Ad, to the left of
AG_); using (2.120a), we have defined

. 1 Y
A= :Qﬂvmu_ i M 1+7v2’ ANHGUU

and ik s i§ A
Qs =1(e7BAG_+ €T A5,) (2.166)

describes fluctuations in the quadrature of the scattered field that is in phase
with the mean scattered field amplitude. What is to be gained from this
decomposition? To answer this question we must first calculate the steady-

state correlations that appear in (2.164):
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Exercise 2.7 Show that

(46,85 )= 3 a H\Jn , (2.167a)

(:(A55)%: o= wﬂﬁ\w&w : (2.167b)

2Re(e'? ((A5.)246_)) = V2 q “M% . (2.167¢)
(A64)(85_ e ~ ({454 A5_)us)? = Wﬁeﬁu nwu: . ey

Now, when (2.165) and (2.167a)~(2.167d) are substituted into (2.164), the
answer g{) (0) = 0 must, of course, be recovered for all field strengths Y. The
relative importance of the terms within the square bracket changes with ¥,
however, and it is here that the new insight lies. For weak fields (Y2 << 1),
the dominant terms in (2.164) are

A%+ (DG4 AG Yoy m A® m LY2, (2.168a)
A?4(: (AGyp)? e N —-3v4, (2.168b)
((A54)%(A5-)%)es — ((A54 A5 _)gg)” = 1Y, (2.168¢)

For strong fields (Y? >> 1) they are .
A% 4 (A5 AG Yoo~ (AGLAG Y= L, (2.169a)
(44 )2(85- )Y — (85485 )as)” ~ -1 (2.169b)

I8

Observe that the negative term, which is the source of the antibunching — it
will produce the —1 on the Jeft-hand side of (2.164) [remember that the g (0)
on the left-hand side is zero] — comes from the first term inside the square
bracket on the right-hand side of (2.164) for weak fields, and from the third
term inside the square bracket for strong fields. These terms, respectively,
describe self-homodyning between the incoherent and coherent components
of the scattered field, and intensity fluctuations in the incoherent component
of the scattered field. Thus, a different physical picture for the fluctuations
in the antibunched field is suggested in the weak-field and strong-field limits.
A negative value for ( : (Af,/2)? : )us is the signature of squeezing; thus, at
weak fields photon antibunching arises from the self-homodyning of squeezed
fluorescence; here photon antibunching is associated with the nonclassical
statistics of a phased oscillator. Phase information is destroyed in the strong-
field limit. For strong excitation the coherent component of the scattered field
saturates and the homodyning term in (2.164) becomes unimportant. Photon
antibunching in the strong-field limit arises from sub-Poissonian intensity
fluctuations in an unphased scattered field. For a suggestive illustration we
can compare a displaced squeezed vacuum state (weak fields) and a one-
photon Fock state (strong fields), as illustrated by Fig. 2.9.
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(a)
Fig. 2.9 Schematic illustration of the
fluctuations in the two quadrature phase
amplitudes of (a) a displaced weakly
squeezed vacuum state (squeeze param-
@ eter r = A?) and (b) a one-photon

Fock state. Both states have ¢t (0) = 0
(to lowest order in A? for the squeezed
state). The curves are contours of the
Wigner distribution (see Chap. 4).

Note 2.11 One scheme for detecting squeezing, described by Mandel [2.58],
involves homodyning the scattered light with a strong local oscillator and
measuring photon-counting statistics as a function of the local oscillator
phase. Squeezing is indicated by a phase dependent variation from super-
Poissonian statistics, when the unsqueezed quadrature is selected by the local
oscillator phase, to sub-Poissonian statistics, when the squeezed quadrature
is selected by the local oscillator phase. Equation (2.164) corresponds to a
special case of this procedure where the local oscillator is the coherent flu-
orescent scattering itself. Under these conditions we do not, of course, have
control over the local oscillator amplitude and phase. To convert the expres-
sions we have derived so that they describe a squeezing measurement for the
fluorescence in accord with Mandel’s scheme we simply replace A by a large
local oscillator amplitude B, and replace I by an adjustable phase ¢. If the
local oscillator intensity is much larger than the fluorescence intensity, the
combined field of local oscillator plus fluorescent scattering then gives

4: ﬁbmeum ! Jss
B2
Actually, B is not the local oscillator field amplitude, it is only proportional
to this amplitude. The proportionality is the same as that between o_ and

m.mt“ from (2.138), it is such that the mean number of photons counted
during AT, for a detection efficiency 7 and solid angle Af2, is

g20) -1~ . (2.170)

() =y AT B2, (2.171)

Substituting from (2.170) and (2.171) into (2.161), the photon counting dis-
tribution is characterized, as either super-Poissonian or sub-Poissonian, by
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Af2sin? @

Q¢ =mAT 573 4(:(A64)% : )ss. (2.172)

When the oscillator phase is F,

AQsin’6 Y2(v2 - 1)

Qg =nyAT /3 4y (2.173)

This gives sub-Poissonian counting statistics for ¥2 < 1. An explicit expres-
sion for arbitrary ¢ can be calculated as an exercise.




